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Abstract— Navigation problems expressed via temporal logics
show promise for autonomous robot applications due to their
versatility. In this paper, we introduce a method for planning
with these specifications in uncertain environments that yields
guaranteed satisfaction probabilities. We show that point-based
value iteration can be combined with probabilistic roadmaps
to solve this planning problem over the belief space of the
uncertain environment.

I. INTRODUCTION

Probabilistic planning problems such as the rover science
exploration problem (Fig.1) and the planning of search-and-
rescue missions executed by autonomous robots are planning
problems that pose two main challenges, firstly they require
long term autonomy combined with intelligent, complex
behavior, and secondly, they require the planning to work
well in very uncertain environments. The first challenge
has been addressed by using temporal logics, which adds
new specification facets that are more complex and carry
the promise for more long term autonomy. Tackling both
challenge, this paper introduces a temporal logic planning
approach for uncertain environments around the exemplary
problem of rover science exploration depicted in Fig.1.
The objective of the rover is to collect samples of science
targets while avoiding hazards such as large rocks, deep
sand or steep slopes. The presence of science targets and
hazards regions is uncertain and needs to be explored by the
rover while executing the science mission. For basic science
missions, this partially observable Markov decision problem
(POMDP) has been solved as a simple discounted reward
problem in [21].

The majority of high-level specifications that expresses
missions in terms of formulae in a temporal logic of choice
have been developed and applied to planning problems in
a deterministic setting. This includes the temporal logic
planning [12], and reactive planning in [13], [26] for de-
terministic models. Equivalent results for general stochastic
models with guarantees are computationally intractable for
continuous space systems and require using approximate
abstractions [10], [23], [27] to obtain solutions.

Leveraging sampling-based planning or probabilistic
roadmaps, there are many promising solutions to complex
planning problems specified with temporal logics. This in-
cludes inter alia [5], [6], [19]. Convergence to optimality is
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Fig. 1. The figure illustrates the knowledge available to the rover while
planning science missions. The goal is to obtain samples and avoid hazard
regions such as sandy spots. The rover does not recognize a priori whether
a region does or does not contain a sample or an obstacle.

proven for sampling-based algorithms that solve motion plan-
ing problems using process algebra specifications in [24].
These methods can be extended to handle state uncertainty
for partially observable rovers [2], [25], but they cannot yet
be used to deal with partially observable environment states.

In contrast, the quest to solve planning problems in
partially observable and stochastic domains [11] has led to
the development of the tailored approximate dynamic pro-
gramming methods referred to as point-based value iteration
[18]. These solvers have been used to solve reachability
and safety problems for finite, partially observable Markov
decision problem [15], [16], and to solve probabilistic speci-
fications [17]. Originally developed for finite-state problems,
these methods need computationally expensive abstractions
to work for continuous-state models. As such, we prefer to
not use pure point-based value iteration to solve complex
navigation problems. In this work, we give an algorithm
that combines the merits of roadmaps for planning with the
rover’s state, and point-based value iterations for dealing with
(finite) partially observable environments.

The article is organized as follows. In the next section, the
temporal logic navigation problem in uncertain environments
is introduced. Section III details the conceptual idea of the
integration of temporal logic specifications, planning and
belief points into a unified method. Subsequently, Section IV
contains the technical details and proofs of the theoretical
results needed to give the complete method in Section
V. Section VI presents a Mars rover case study, before
conclusions are given in the last section.

II. FRAMEWORK AND PROBLEM STATEMENT

As a concrete example of our navigation problem in
uncertain environments, we focus on a typical environment



that the Mars rover navigates through consisting of different
terrain types including sand, rocks, etc.
The rover model: The rovers movements are modeled as an
ordinary differential equation with ẋ = f (x,ur)+w, where
x ∈ X is the state of the rover, ur the input, and w is a
stochastic disturbance. Beyond the current location of the
rover, its state can include its velocity and orientation.
The rover environment: The rover navigates through differ-
ent types of regions. Without loss of generality, we assume
that prior knowledge of the map will tell us that the k-the
uncertain area could be sand or not, but it will not tell
us that it could be either sand or rock, or nothing. That
is, we assume that the different region types are always
distinguishable. Therefore, the environment state xe for an
environment with ne uncertain regions takes valuations in
the finite set xe ∈ {0,1}ne =: Xe. As such xe(k) = 1 if
the region type holds in that region and xe(k) = 0 if not.
Knowledge of the environment expressed by the value of
xe is not available and can only be inferred from noisy
measurements or observations made by the rover. As
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Fig. 2. The rover state xr is modeled together with unknown environment
state xe and the types of the individual regions.

in Figure 1, we can express the prior belief that the k-
th region actually contains the samples or obstacles as a
belief distribution b that assigns to each possible environment
state xe a probability b(xe). We refer to this distribution
as the belief state b of the environment, and this state is
such that b : Xe → [0,1] and ∑xe∈Xe b(xe) = 1. The space
of possible belief is denoted as B. An equivalent vector-
based notation b :=

[
b(x1

e) b(x2
e) b(x3

e) . . .
]T based on

an enumeration of the environment states xi
e for which Xe =:

{x1
e ,x

2
e ,x

3
e , . . . ,x

n
e} with n = 2ne = |Xe| can also be used.

The rover interacts with the environment via observations.
The interaction is modeled via an observation model (O,ob),
where O := {o1, . . . ,om} denotes the finite set of possible
observations; and ob(·) denotes the stochastic kernel that
assigns probabilities to observations o ∈O given xe ∈ Xe:

ob : Xe× (X×Ue)×O→ [0,1]. (1)

The observation action ue ∈Ue is the choice of region(s) that
the rover is observing and the current state of the rover is
given as x∈X. The observation probability depends on x via
the distance to the observed region.
Based on observation o, the rover state x, and action (x,u)∈
X×Ue, the belief b = P(xe|{ past info}) is updated as

b(x,u),o(xe) =
P(o|xe,(x,u))
P(o|b,(x,u))

b(xe). (2)

Denote O ∈ Rm×n with the i j-th element defined as
[O(x,u)]i j := ob(oi|x j

e,(x,u)) and denote with Oo(x,u) the
row vector of O(x,u) for observation o. Remark that

P(o|b,(x,u)) =∑xe∈Xe ob(o|xe,(x,u))b(xe) = Oo(x,u)b. (3)

Adopting the notation of [3], the updated belief becomes

b(x,u),o =
diag [Oo(x,u)]b
‖diag [Oo(x,u)]b‖1

(4)

with the 1-norm ‖a‖1 := ∑ |ai|.
Specifications in linear temporal logic: Consider a set
AP = {p1, . . . , pL} of atomic propositions that defines an
alphabet Σ := 2AP where each letter π ∈ Σ is composed
of a set of atomic propositions. An infinite string of letters
forms a word πππ = π0π1π2 . . .∈ΣN. Specifications imposed on
the behavior the rover are defined as formulas composed of
atomic propositions and operators. We consider the syntac-
tically co-safe subset of linear-time temporal logic (scLTL)
properties [14]. This subset of interest consists of temporal
logic formulae constructed according to the following syntax

ψ ::= p | ¬p | ψ1∨ψ2 | ψ1∧ψ2 | ψ1 U ψ2 | ©ψ. (5)

where p ∈ AP is an atomic proposition. The semantics of
scLTL are defined recursively over πππ i as πππ i |= p iff p ∈ πi;
πππ i |= ψ1 ∧ψ2 iff (πππ i |= ψ1)∧ (πππ i |= ψ2); πππ i |= ψ1 ∨ψ2 iff
(πππ i |= ψ1)∨ (πππ i |= ψ2); πππ i |= ψ1 U ψ2 iff ∃ j ≥ i s.t. (πππ j |=
ψ2) and πππk |=ψ1,∀k ∈ {i, . . . j−1}; and πππ i |=©ψ iff πππ i+1 |=
ψ . The eventually operator ♦ ψ is used in the sequel as
a shorthand for > U ψ . We say that πππ � ψ iff πππ0 � ψ .
Specifying rover behavior: Together with the rover location,
the observations define the set of atomic propositions that
hold true at a given time instant. A labeling function Lr :
X→ APr maps the rover location to the region type r ∈
APr. Similarly, the observations o ∈ O map to APo with
the labeling Lo : O→ 2APo . Therefore, the rover generates
words πππ with letters πi ∈ Σ := 2AP with AP := APr∪APo.
The mission executed by the rover satisfies ψ if πππ � ψ .
Problem statement: The objective of this work is to design
a policy µ such that a specification ψ is satisfied with a
guaranteed lower bound on the satisfaction probability, i.e.,

Pµ(πππ |= ψ). (6)

The policy µ maps the history of the rover state and its
observations to the rover control and observation actions.

III. BELIEFS, ROADMAPS AND TEMPORAL LOGICS

A. Planning with temporal logic specifications

Consider a deterministic finite-state automaton (DFA), de-
fined by the tuple A = (Q,q0,Σ,τA ,Q f ), where Q is a finite
set of states, q0 ∈Q is an initial state, Σ is an input alphabet,
τA : Q×Σ→ Q is a transition function, and Q f ⊆ Q is a
set of accepting states. A word πππ = π0π1π2 . . . is accepted
by a DFA if there exists a sequence q0q1q2 . . .q f with
q f ∈ Q f , that starts with the initial state q0 and for which
qk+1 = τA (qk,πk). In other words, a sequence of letters is
accepted if the resulting execution in the DFA reaches the set
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Fig. 3. The figure depicts the idea for belief space temporal logic planning. Properties are expressed as reach(-avoid) problems over deterministic finite
state automata (DFA). This reach problem is solved over the probabilistic roadmap for the rover navigation with the point-based value iteration over the
belief spaces.

of accepting states. We denote the set of words accepted by a
DFA A as L (A ). For every scLTL property ψ there exists
a DFA Aψ modeling it [4], [14]. In particular, πππ |= ψ iff
πππ ∈L (Aψ). Problem (6) can be converted into the problem
of constructing a reachability-enforcing policy over the DFA
Aψ .

B. Probabilistic roadmap for rover navigation

We abstract the dynamics of the rover by using a proba-
bilistic roadmap (PRM) [8] as depicted in the middle of Fig.
3. A collection of useful states/configurations vi is selected
in a random fashion. Then, a graph G = (V,E) is built
with vertices V := {v1, . . . ,vn} and edge set E := {ei j, . . .}
with ei j the edge connecting nodes vi and v j. Each vertex
vi is associated to a rover state or configuration. Between
nodes, the rover is controlled by a low-level edge controller
and follows a precomputed path. We limit the roadmap G
as follows. Firstly, at each vertex, the rover choose which
neighboring node to drive to and what sensor to use to
observe the environment. Secondly, we require that for any
two neighboring states (v1,v2) there exists a local control
ur(t) and risk 1− pv1,v2 such that the realized trajectory
between v1,v2 does not change its label Lr(x(·)) more
than once with the probability pv1,v2 . This requirement is
commonly used for deterministic temporal logic planning
[7], [24] as it simplifies the computations while it does not
affect the existence of solutions. Additionally, we require that
there is a vertex v0 ∈V that represents the initial state of the
rover at the beginning of the planning problem.

Practically, we can split the computations for the PRM
up in a high-level planner that plans over the PRM based
on the uncertainty in the regions and prunes and resamples
useful states, and a low-level planner that computes the risks
associated to connecting vertices and that maps the local
route of the rover. The low-level planner can be solved as
for example a stochastic reach-avoid problem, see [1], [23].

C. Planning over the scLTL-PRM with belief states

While navigating with the rover, the state qi of the DFA,
the state vi, of the PRM and the current belief state bi of the
environment are available. We refer to this combined system,
given in Fig. 3 and 4, as the scLTL-PRM with belief states.

MG
xr

roadmap

Menv
b

environmentv∈V
e∈E

u∈Ue

o∈APOr∈APr

Fig. 4. Composition of the roadmap model MG
xr and the belief model of

the environment Menv
b .

In conclusion, to solve the planning problem for scLTL
specifications in uncertain hazardous environments, we will
compute a navigation policy based on the current state
(q,v,b) that decide which e ∈ E to take towards the next
vertex v′ in the roadmap and the next observation action
u ∈ Ue. The objective is to find the policy or strategy that
yields a guaranteed probability on the satisfaction of the
specification ψ . In the next section, we will define the value
functions for this navigation problem and show that they
have a local piece-wise affine structure. This enables the use
of point-based value iteration schemes [20] that use a finite
number of beliefs.

IV. EXACT VALUE ITERATION

Consider a given Markov policy µ = (µ0, . . . ,µK−1), with
µi : Q×V×B→ E ×Ue. The probability of reaching Q f
starting from s0 within K time steps can be expressed as

VK
µ (s) =Eµ

[ K

∑
i=0

1Q f (qi)
i−1

∏
j=0

1Q\Q f (q j)

∣∣∣∣s0 = (q0,v0,b0)

]
, (7)

with s= (q,v,b). The value function VK
µ (x) can be computed

recursively as VK
µ = Bµ(VK−1

µ ) with V0
µ = 1Q f (q), and with

the Bellman recursion

Bµ(V)(q,v,b) = max
{

1Q f (q),E
S
µ

[
V
(
q′,v′,b′

)
| (q,v,b)

]}
.

For the prefix πππ≤K of length K it holds that Pµ(πππ
≤K |=

ψ|s0) = VK(s0). Denote the optimal Bellman recursion as

B∗(V)(q,v,b) := max
µ

Bµ(V)(q,v,b) (8)

with the resulting fixed point V∞
∗ := limK→∞BK

∗ (V0) for
which BK

∗ (V0) defines the K-th iterated application of the



Bellman mapping. The maximal satisfaction probability is
given as

Pµ∗(π |= ψ) = V∞
∗ (q0,v0,b0). (9)

If B∗ is contractive, then V∞ is the unique fixed point and
optimal policy µ∗ is the stationary Markov policy given as

µ
∗ := argmax

µ
Bµ(V∞

∗ )(q,v,b). (10)

Theorem 1 (Properties of the optimal Bellman recursion):
The Bellman operator B∗ defined in equation (8) satisfies
the following properties: if for all q,v: V(q,v,b) is convex
with respect to b ∈ B, then B∗(V)(q,v,b) is convex with
respect to b ∈ B. And if V is a convex piecewise affine
function given as

V(q,v,b) = maxα∈Γ(q,v) α ·b (11)

for which Γ(q,v) are sets of vectors, then for all (q,v)
there exists sets ΓB(q,v) such that B∗(V)(q,v,b) =
maxα∈ΓB(q,v) α ·b.

To prove that Theorem 1 holds, we analyze 1) choosing
and transitioning over a PRM edge and 2) receiving an
observation after choosing an observation action.
1) PRM edge: For a given input e ∈ E , the partial Bellman
operator can be denoted as

Be(V)(q,v,b)=max
{

1Q f (q),Ee[V(q,v′,b′)|q,v,b,e]
}
. (12)

This operator is simple since for the given edge choice e
the next node v′ is known and the state in the DFA remains
constant. At the same time, the belief about the environment
is preserved. Thus, the expectation in Eq. (12) reduces to

Ee[V(q,v′,b′) | b,v,q] = pv,v′V(q,v′,b) (13)

for which probability pv,v′ is associated to v e−→ v′. The
convexity with respect to b is preserved and

ΓBe(q,v) := {pv,v′α|α ∈ Γ(q,v′)}=: pv,v′Γ(q,v
′).

Since 1Q f (q) is constant with respect to b, the maximization
step preserves convexity and the piecewise affine structure.
2) Observation action: For a given observation action
u ∈ Ue, we can again express the partial Bellman recursion
Bu(V) for the observation as

Eu[V(q′,v,b′) | b,v,q] =∑o∈OV(q′,v,b′)P(o|b,(v,u)) (14)

for which q′ is such that q
Lr(v)∪Lo(o)−−−−−−−→ q′. Consider Lemma

2 in [3], which states that if g is convex in b, so is
g
(
b(x,u),o

)
P(o|b,(v,u)). This implies that Eq. (14) is convex

in b, because the sum operator preserves convexity. If V
is piecewise affine for each pair (v,q), then the above
expectation can be written as follows

∑
o∈O

max
α∈Γ(v,q′)

α ·b(v,u),oP(o | b,(v,u)) . (15)

Here the set of alpha vectors Γ(v,q′) is given based on
the pair v,q′, which can be computed given observation o,

node v, DFA state q, and the applied input u ∈ Ue. For
ease of notation, we index the updated belief b(v,u),o, with
v instead of the corresponding location x. Denote α(v,u),o =
diag[Oo(u,v)]α, where for the given constant value of v the
alpha vector is indexed based on the applied action and the
returned observation, then it holds that(

α ·b(v,u),o
)
P(o | b,(v,u))≡ α

(v,u),o ·b.

This reduces equation (15), to ∑o∈O maxα∈Γ(v,q′) α(v,u),o ·b.
For a given u define

ΓBu(v,q) :=
{
∑
o

α
(v,u),o|α ∈ Γ(v′,q′)

}
for q 6∈ Q f , (16)

for which the expectation (14) equates to maxα∈ΓBu
α ·b.

We are now ready to compose the proof of Theorem 1.
Proof: [Proof of Theorem 1] The Bellman operators
Bu(V)(b,v,q) for e ∈ E or u ∈ Ue preserve convexity and
preserve the piecewise affine nature of a value function. For
a given composed action (e,u) ∈ E ×Ue, their sequential
application yields a composed Bellman operator B(e,u) :=
Bu ◦Be that still preserves convexity and preserves the piece-
wise affine nature of a value function. The optimal Bellman
recursion given as B∗(V)(b,v,q) =max(e,u)B(e,u)(V)(b,v,q).
Since also the maximization over all E ×Ue preserves these
properties, we have proven Theorem 1.
Since the value iterations are initialized with 1Q f (q), this im-
plies that for K finite iterations VK

∗ (q,v,b) can be expressed
as a convex piecewise affine function

VK
∗ (q,v,b) = max

α∈Γ(q,v)
α ·b.

With VK
∗ ≤V∞

∗ and, for K→∞, the value function VK
∗ (q,v,b)

converges to V∞
∗ . For these value functions, the use of a

roadmap has already introduced an approximation that leads
to a type of sparseness, as only limited configurations or
states of the rover need to be used to compute the value
function. Next, we show that by working with a point-based
value function also a reduced representation over the belief
space is used, leading to an overall efficient method.

V. POINT-BASED VALUE ITERATION OVER SCLTL-PRMS

To solve the value iteration approximately, we implement a
point-based value iteration [18], [22]. Starting from a limited
set of belief points B(v,q) := {bi} at each vertex, we now
use approximate Γ sets that only include the α vectors
associated to belief points in B(v,q). As a consequence of
Theorem 1, the resulting approximate value function will still
be a lower bound of the true value function.

For each given point b, we compute the associated value
function and the optimizing α-vector using the backup oper-
ation backup(b,v,q,Γ) for q ∈Q\Q f as given in Algorithm
1. Given a set of belief points B(q,v) and a set of alpha
vectors Γ, this yields the operator denoted as BB given as

BB(Γ)(q,v) := {backup(b,v,q,Γ)|b ∈B(q,v)}. (17)

The associated policy can be computed together with the
alpha vectors. Thus, we have introduced back-ups typically



Algorithm 1: α = backup(b,v,q,Γ)
α(v′,u),o← argmaxα∈Γ(q′′,v′) α(v′,u),o ·b ;
α(v′,u)← ∑o α(v′,u),o;
αv′ ← argmaxα(v′,u) ·b;
α ← pv,v′

(
arg max

αv′ ,v
e−→v′

pv,v′
(
α

v′ ·b
))

used for POMDP problems [18], [21] and we have adapted
them to solve a probabilistic reachability over the PRM
and the specification DFA. Iterative improvement to the
probabilistic roadmaps can be used in combination with
iterative expansion of the set of belief points to increase the
computational precision.

Pruning vertices v ∈ V that do not influence the value
iterations reduces the computational burden of the algorithm.
Elements of V and E can only be pruned if they do not affect
the soundness of the value function. That is, we require that
the updated roadmap G′ = (V′,E ′) is such that for any v∈V

V(q,v,b) = max
α∈Γ(q,v)

α ·b

stills represent a lower-bound on the true probabilistic reach-
ability over the pruned G′ = (V′,E ′) and that the initial
location of the rover v0 is still in V. This implies that
we preserve all vertices that can be reached from v0 via
transitions that belong to the maximizing policy. In this
paper, we use a basic grid-based uniform sampling algorithm
[9] that excludes samples in known obstacles. More advanced
sampling methods can either be used to create a better
uniform distribution or to increase samples in more difficult
regions. The belief point set B(v,q) := {bi} is built based on
the reachable belief points. Reachable points are iteratively
added based on their distance to B(v,q) as explained in [18].

VI. CASE STUDY

In this section, we introduce a case study and apply the
point-based value iteration over an scLTL-PRM to solve
it. After introducing models for the rover, the uncertain
environment, and measurements, we showcase the use of
point-based value iteration for scLTL planning.

Abstract robot models. Many types of low-level controllers
are available to control the robot over a roadmap. For clarity,
we use a simple linear model that captures the essential
dynamics of the rover that moves around in a workspace.
That is, the rover is modeled as x+ = x+u+w, with x ∈R2.
The state takes values in the [−5,5]× [−5,5] configuration
space of the robot. Here we restrict attention to risk regions
that may contain obstacles that the rover can not traverse, and
target regions that are likely places where scientific samples
can be extracted. These uncertain regions are denoted as
Ak the potential target regions with k = {1,2} and Rk
the uncertain risk regions with k := {3,4,5} as in Fig. 5.
Additionally, the configuration space includes regions that
clearly contain obstacles. These regions are denoted as R
or depicted with the full brick pattern in Fig. 5. The belief

that an obstacle or, respectively, a sample is present in an
uncertain region is modeled with the environment model and
inferred through measurements as detailed next.
Environment and measurement model. After choosing
with uk ∈ Ue to observe the k-th region, a true or false
measurement is obtained, denoted respectively as tk and fk.
The probability of these samples is given as

P(tk) =
{

1−Pfalserate(x,k) if xe(k) = 1
Pfalserate(x,k) if xe(k) = 0 (18)

and P( fk) := 1− P(tk) and P( f j),P(t j) = 0 for all j 6= k.
This yields the set of observations O :=

⋃ne
k=1{tk, fk}. The

false rate of the measurement Pfalserate(x) is a function of the
distance of the rover to the region, that is

Pfalserate(x,k) :=


0 x ∈Pk, else
0.2 d(x,Pk)≤ 1,
0.1+0.1d(x,Pk) 1≤ d(x,Pk)≤ 4,
0.5 d(x,Pk)≥ 4.

where d(x,Pk) is the distance betweem the rover and the
k-th region.
Specification. The rover needs to collect a sample and avoid
obstacles. This former part is specified as being in uncertain
sample/target regions (Ai) and finding a sample in it (ti),
i.e., φtarget := ♦(A1∧ t1)∨♦(A2∧ t2). Additionally, the rover
should not enter a region with obstacles. For the uncertain
regions this is equivalent to finding an obstacle while being in
that region. This type of failure is expressed as φunsa f e :=R∨∨5

k=3(Rk∧ tk) with R the proposition for the known obstacle
regions and Rk the uncertain obstacle regions. The overall
mission specification can hence be expressed as

ψ := ¬φunsa f e U φtarget . (19)

Results. For this case study the objective is to compute a
strategy that maximizes the guaranteed probability P(π �ψ).
In Fig. 5, the initial vertices of the roadmap are given
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Fig. 5. The initial roadmap from which the computations start is given in
grey, whereas the the roadmap after pruning and resampling 4 times with
100 belief points in each vertex is given in blue.

together with the initial beliefs in the uncertain regions. In



each of the vertices, the belief point set B(v,q) := {bi}
contains 100 belief points. In between the value iterations,
the roadmap is pruned and resampled 4 times. After 4 times
increasing the number of pruning and resampling times did
not increase the accuracy much more. This yields the more
optimized roadmap given in blue Fig. 5. In this roadmap,
nodes that lead toward the regions of interest have been
automatically preserved.

After these computations, the synthesized strategy yields
a satisfaction probability of at least 0.61. In Fig. 6, a single
execution of this policy is given. The rover moves over the
nodes of the roadmap and observes the different regions.
As shown in the figure, the true and false measurements of
a region (up/down sign) impact the satisfaction probability.
The bottom plot depicts the evolution of the beliefs for each
of the individual regions.

Fig. 6. The distance travelled versus the current mission probability are
given in the top figure and the beliefs in the uncertain regions are given in
the bottom plot.

VII. CONCLUSIONS

We have shown that it is possible to combine the benefits
of probabilistic roadmaps and point-based value iterations
to solve planning problems in uncertain environments. The
given method is sound as it gives a lower bound on the
satisfaction probability.
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